Welcome to the Yale Club of San Francisco - Professor Steven Girvin visiting San Francisco on April 5th

 
   New user, registration is FREE Sign In  
 
Professor Steven Girvin visiting San Francisco on April 5th
   
On April 5th the Yale Club of San Francisco and Yale Tech are very excited to host Professor Steven Girvin, Deputy Provost for Science & Technology at Yale.

The Yale Club of San Francisco and Yale Tech are very excited to host Professor Steve Girvin, renowned for his theoretical work on quantum many body systems, such as the fractional quantum Hall effect.

Professor Girvin is a theoretical physicist who studies the quantum mechanics of large collections of atoms, molecules and electrons such as are found in superconductors, magnets and transistors. Of particular current interest to him is the engineering question of whether it is possible to build a quantum computer.

We hope you can join us for a special evening in a close conversation with Professor Girvin. Refreshments will be served beginning at 6:30 PM. The talk will start at 7:00 PM.

Biographical Sketch:

Steven Girvin is a theoretical physicist who studies the quantum mechanics of large collections of atoms, molecules and electrons such as are found in superconductors, magnets and transistors. Of particular current interest to him is the engineering question of whether it is possible to build a quantum computer. He is collaborating with experimentalists Rob Schoelkopf and Michel Devoret in Applied Physics who are constructing superconducting circuit elements which might someday form the basis for a quantum computer. Such a computer could in principle solve problems which are impossible on ordinary computers. However in order to build a quantum computer it is necessary to create circuit devices which behave quantum mechanically (like individual atoms) despite the fact that they are macroscopic and consist of a very large number of atoms. In addition to potential practical applications, this difficult challenge will help us better understand the connections between the microscopic quantum world and the macroscopic classical world of everyday experience.

Professor Girvin is interested in quantum many-body physics, and quantum and classical phase transitions, particularly in disordered systems. A quantum phase transition is one which occurs at zero temperature as some parameter in the Hamiltonian is varied. Using path integral techniques, one can often show that a quantum critical point in a d-dimensional system is in the same universality class as some other classical system in (d+1)-dimensions. He is interested in finding quantities that are universal properties of the system near the critical point and are independent of all microscopic details. For example, the electrical conductivity of some two-dimensional conductors at critical points is a universal dimensionless number of order unity times the quantum of conductance, e2/h.

Much of his work has been on the quantum Hall effect, but he has also worked on the superconductor-insulator transition, the vortex glass transition in high Tc superconductors, superfluid helium in fractal aerogel, the Anderson localization problem, the Coulomb blockade problem in mesoscopic device physics, and on quantum spin chains.

His work is approximately evenly divided between analytical theories and numerical simulations.

RSVP to the right (on this page).

 

Event Information
EVENT DATE:
Wednesday, Apr 5 2017 at 6:30pm - 8:30pm [ iCal ]
LOCATION:
Morrison Foerster
425 Market St
San Francisco , CA 94105
  RSVP Here...
Please enter your details below and click the RSVP button at the bottom.
Note: red fields are required.
First Name:
Last Name:
Email:
Organization:
Tel:
Title/Function:
Website:

Please type the digits shown here into this box:

The Yale Club of San Francisco
Yale Photographs courtesy of Michael Marsland/Yale University
© Copyright Yale Club of San Francisco, ALL RIGHTS RESERVED.


Alumni Development Software